
www.bytescout.com

How to set custom functions with spreadsheet sdk in VB.NET and
ByteScout Data Extraction Suite

If you want to learn more then this tutorial will show how to set custom functions with
spreadsheet sdk in VB.NET

Quickly learn how to set custom functions with spreadsheet sdk in VB.NET with this sample source code.
ByteScout Data Extraction Suite is the set that includes 3 SDK products for data extraction from PDF, scans,
images and from spreadsheets: PDF Extractor SDK, Data Extraction SDK, Barcode Reader SDK and you
can use it to set custom functions with spreadsheet sdk with VB.NET.

The SDK samples given below describe how to quickly make your application do set custom functions with
spreadsheet sdk in VB.NET with the help of ByteScout Data Extraction Suite. IF you want to implement the
functionality, just copy and paste this code for VB.NET below into your code editor with your app, compile
and run your application. Applying VB.NET application mostly includes various stages of the software
development so even if the functionality works please test it with your data and the production environment.

Trial version of ByteScout Data Extraction Suite is available for free. Source code samples are included to
help you with your VB.NET app.

FOR MORE INFORMATION AND FREE TRIAL:

Download Free Trial SDK (on-premise version)

Read more about ByteScout Data Extraction Suite

Explore API Documentation

Get Free Training for ByteScout Data Extraction Suite

Get Free API key for Web API

visit www.ByteScout.com

Source Code Files:

https://www.bytescout.com/?utm_source=website-article-pdf
https://bytescout.com/download/web-installer?utm_source=pdf-source-code-sample
https://bytescout.com/products/developer/dataextractionsuite/index.html?utm_source=pdf-source-code-sample
https://bytescout.com/documentation/index.html
https://bytescout.com/documentation/index.html
https://pdf.co/documentation/api?utm_source=pdf-source-code-sample
https://bytescout.com/?utm_source=pdf-source-code-sample

Module1.vb

Imports Bytescout.Spreadsheet

Module Module1

 ' This example demonstrates the calculation of custom functions.
 Sub Main()

 ' Create Spreadsheet instance

 Dim spreadsheet As New Spreadsheet()
 spreadsheet.RegistrationName = "demo"
 spreadsheet.RegistrationKey = "demo"

 ' Load document
 spreadsheet.LoadFromFile("CustomFuncExample.xlsx")

 ' Add custom formula handler
 spreadsheet.CustomFunctionsCallback = AddressOf MyFunctions

 ' Calculate the first worksheet
 Dim worksheet = spreadsheet.Workbook.Worksheets(0)
 worksheet.Calculate()

 ' Save calculated values to neighbor cells to demonstrate custom functions are calculated
 worksheet("C2").Value = worksheet("B2").Value
 worksheet("C3").Value = worksheet("B3").Value
 worksheet("C4").Value = worksheet("B4").Value

 ' Save modified spreadsheet
 spreadsheet.SaveAs("result.xlsx")

 ' Cleanup
 spreadsheet.Dispose()

 ' Open saved spreadsheet in associated application (for demo purpose)
 Process.Start("result.xlsx")

 End Sub

 Private Function MyFunctions(ByVal funcname As String, ByVal args As Object(), ByRef handled As Boolean) As Object

 ' Handle "CUSTOMFUNC_FACTORIAL" function
 If String.Compare(funcname, "CUSTOMFUNC_FACTORIAL", StringComparison.OrdinalIgnoreCase) =

 handled = True

 ' Compute factorial
 If args.Length > 0 Then
 Dim value As Integer = args(0)

 If value = 0 Or value = 1 Then
 Return 1
 End If

 Dim f As Integer = 1

 For i As Integer = 1 To value
 f = f * i
 Next

 Return f
 End If

 Return Nothing

 End If

 ' Handle "CUSTOMFUNC_SUM" function
 If String.Compare(funcname, "CUSTOMFUNC_SUM", StringComparison.OrdinalIgnoreCase) =

 handled = True

 ' Compute the sum of values
 If args.Length > 0 Then

 Dim sum As Double

 For Each o As Object In args
 sum = sum + o
 Next

 Return sum

 End If

 Return Nothing

 End If

 Return Nothing

 End Function

End Module

VIDEO

https://www.youtube.com/watch?v=NEwNs2b9YN8

ON-PREMISE OFFLINE SDK

https://www.youtube.com/watch?v=NEwNs2b9YN8

60 Day Free Trial or Visit ByteScout Data Extraction Suite Home Page
Explore ByteScout Data Extraction Suite Documentation
Explore Samples
Sign Up for ByteScout Data Extraction Suite Online Training

ON-DEMAND REST WEB API

Get Your API Key
Explore Web API Docs
Explore Web API Samples

visit www.ByteScout.com

visit www.PDF.co

www.bytescout.com

https://bytescout.com/download/web-installer
https://bytescout.com/products/developer/dataextractionsuite/index.html
https://bytescout.com/documentation/index.html
https://github.com/bytescout/ByteScout-SDK-SourceCode/
https://academy.bytescout.com/
https://app.pdf.co/signup
https://pdf.co/documentation/api
https://github.com/bytescout/ByteScout-SDK-SourceCode/tree/master/PDF.co%20Web%20API/
https://bytescout.com/?utm_source=pdf-source-code-sample
https://pdf.co/?utm_source=pdf-source-code-sample
https://www.bytescout.com/?utm_source=website-article-pdf

